Three coins are tossed once. Find the probability of getting no head.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

When three coins are tossed once, the sample space is given by $S =\{ HHH , HHT , HTH , THH , HTT , THT , TTH , TTT \}$

$\therefore$ Accordingly, $n ( S )=8$

It is known that the probability of an event $A$ is given by

$P ( A )=\frac{\text { Number of outcomes favourable to } A }{\text { Total number of possible outcomes }}=\frac{n( A )}{n( S )}$

Let $F$ be the event of the occurrence of no head.

Accordingly, $F=\{TTT\}$

$\therefore P ( F )=\frac{n( F )}{n(S)}=\frac{1}{8}$

Similar Questions

A coin is tossed until a head appears or until the coin has been tossed five times. If a head does not occur on the first two tosses, then the probability that the coin will be tossed $5$ times is

The probability of obtaining an even prime number on each die, when a pair of dice is rolled is

If $\frac{2}{11}$ is the probability of an event, what is the probability of the event $'$ not $A ^{\prime}$.

Three coins are tossed. Describe Three events which are mutually exclusive but not exhaustive.

Two dice are thrown. The events $A, B$ and $C$ are as follows:

$A:$ getting an even number on the first die.

$B:$ getting an odd number on the first die.

$C:$ getting the sum of the numbers on the dice $\leq 5$

Describe the events $A^{\prime }.$